Search results

Search for "temporary adhesion" in Full Text gives 5 result(s) in Beilstein Journal of Nanotechnology.

Insect attachment on waxy plant surfaces: the effect of pad contamination by different waxes

  • Elena V. Gorb and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2024, 15, 385–395, doi:10.3762/bjnano.15.35

Graphical Abstract
  • short-term temporary adhesion and locomotion on various microrough surfaces. Contamination of insect pads by plant wax material As well as in our previous study [34], we considered here only the discoidal setal tips allowing for (1) easier visualization of the contamination and (2) more precise
PDF
Album
Full Research Paper
Published 11 Apr 2024

The effect of flexible joint-like elements on the adhesive performance of nature-inspired bent mushroom-like fibers

  • Elliot Geikowsky,
  • Serdar Gorumlu and
  • Burak Aksak

Beilstein J. Nanotechnol. 2018, 9, 2893–2905, doi:10.3762/bjnano.9.268

Graphical Abstract
  • : bent fibers; bioinspired dry adhesives; gecko adhesion; joint-like element; mushroom-like fibers; Introduction Most natural organisms that rely on temporary adhesion to surfaces for survival do so using tiny, densely packed fibers [1][2]. These fibers vary in dimension and material properties
PDF
Album
Full Research Paper
Published 19 Nov 2018

Nanoscale characterization of the temporary adhesive of the sea urchin Paracentrotus lividus

  • Ana S. Viana and
  • Romana Santos

Beilstein J. Nanotechnol. 2018, 9, 2277–2286, doi:10.3762/bjnano.9.212

Graphical Abstract
  • . Keywords: adhesive footprint; atomic force microscopy; nanomechanical properties; sea urchin; temporary adhesion; Introduction Unlike the thin homogeneous films that are typical for adhesives produced by humans, biological adhesives present complex hierarchical micro- and nanostructures. Among marine
PDF
Album
Full Research Paper
Published 24 Aug 2018

The structural and chemical basis of temporary adhesion in the sea star Asterina gibbosa

  • Birgit Lengerer,
  • Marie Bonneel,
  • Mathilde Lefevre,
  • Elise Hennebert,
  • Philippe Leclère,
  • Emmanuel Gosselin,
  • Peter Ladurner and
  • Patrick Flammang

Beilstein J. Nanotechnol. 2018, 9, 2071–2086, doi:10.3762/bjnano.9.196

Graphical Abstract
  • inspiration for biomedical and industrial applications. Nevertheless, natural adhesives and especially temporary adhesion systems are mostly unexplored. Sea stars are able to repeatedly attach and detach their hydraulic tube feet. This ability is based on a duo-gland system and, upon detachment, the adhesive
  • material stays behind on the substrate as a 'footprint'. In recent years, characterization of sea star temporary adhesion has been focussed on the forcipulatid species Asterias rubens. Results: We investigated the temporary adhesion system in the distantly related valvatid species Asterina gibbosa. The
  • adhesion and might facilitate the development of biomimetic, reversible glues. Keywords: duo-gland adhesive system; lectins; marine temporary adhesion; starfish; Introduction Marine biological adhesives are environmentally friendly, biodegradable, and adhere to various surfaces in the challenging
PDF
Album
Supp Info
Full Research Paper
Published 30 Jul 2018

Aquatic versus terrestrial attachment: Water makes a difference

  • Petra Ditsche and
  • Adam P. Summers

Beilstein J. Nanotechnol. 2014, 5, 2424–2439, doi:10.3762/bjnano.5.252

Graphical Abstract
  • most common attachment mechanism in benthic marine animals, where the organisms are often exposed to strong currents in varying directions. Adhesives are used for long term fixation to the substrate, e.g., by mussels and barnacles [40], and glue is also used for temporary adhesion, e.g., in snails
PDF
Album
Review
Published 17 Dec 2014
Other Beilstein-Institut Open Science Activities